QISHLOQ XO‘JALIGIDA KIMYOVIY MODDALAR, CHIQINDILAR VA SANOAT CHIQINDILARINING TA’SIRI

Authors

  • Iksanova Farida Rashidovna Author
  • Jamolova Ruxshona Jaloliddin qizi Author
  • Kadirova Malika Gulam qizi Author

Abstract

Ushbu maqolada qishloq xo‘jaligida qo‘llaniladigan kimyoviy moddalar hamda maishiy va sanoat chiqindilarining agroekotizimga ko‘rsatadigan ta’siri tizimli yondashuv asosida tahlil qilindi. Tuproq–o‘simlik–inson zanjiri doirasida og‘ir metallar, pestitsid qoldiqlari, mikroplastiklar va antibiotiklarga chidamlilik genlarining tarqalish mexanizmlari ilmiy adabiyotlar asosida yoritildi. Tadqiqot natijalari shuni ko‘rsatadiki, ifloslantiruvchi omillar tuproqning fizik-kimyoviy va biologik xususiyatlarini o‘zgartirish orqali o‘simlik fiziologiyasiga bevosita ta’sir ko‘rsatadi hamda bioakkumulyatsiya jarayoni orqali inson salomatligiga xavf tug‘diradi. Agroekotizim barqarorligini ta’minlash uchun monitoring, integratsiyalashgan boshqaruv va remediatsiya strategiyalarini qo‘llash zarurligi asoslab berildi.

References

1.Sh.A. Mutalov, T.T.Tursunov, M.M.Niyazova, K.M.Adilova, B.Z.Zaynitdinova, A.A.Maksudova “Sanoat ekologiyasi (Atrof muhit muhofazasi)” Toshkent 2020. – 359 b.

2.Alloway, B. J. (2013). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (3rd ed.). Springer. https://doi.org/10.1007/978-94-007-4470-7

3.Chen, Q. L., Cui, H. L., Su, J. Q., Penuelas, J., & Zhu, Y. G. (2019). Antibiotic resistomes in plant microbiomes. Trends in Plant Science, 24(6), 530–541. https://doi.org/10.1016/j.tplants.2019.02.010

4.Cycoń, M., Mrozik, A., & Piotrowska-Seget, Z. (2019). Antibiotics in the soil environment-Degradation and their impact on microbial activity and diversity. Frontiers in Microbiology, 10, 338. https://doi.org/10.3389/fmicb.2019.00338

5.FAO & UNEP. (2021). Global assessment of soil pollution. Food and Agriculture Organization of the United Nations.

6.Rillig, M. C., Lehmann, A., de Souza Machado, A. A., & Yang, G. (2019). Microplastic effects on plants. New Phytologist, 223(3), 1066–1070. https://doi.org/10.1111/nph.15794

7.Rillig, M. C., Ziersch, L., & Hempel, S. (2017). Microplastic transport in soil by earthworms. Scientific Reports, 7, 1362. https://doi.org/10.1038/s41598-017-01594-7

8.Steffens, D., et al. (2015). Effects of soil acidification on nutrient availability and microbial processes. Journal of Plant Nutrition and Soil Science, 178(1), 3–15.

9.Tang, J., Zhang, L., Zhang, J., Ren, L., Zhou, Y., Zheng, Y., & Huang, H. (2020). Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soils. Environmental Pollution, 263, 114–623. https://doi.org/10.1016/j.envpol.2020.114623

10.Van Bruggen, A. H. C., He, M. M., Shin, K., Mai, V., Jeong, K. C., Finckh, M. R., & Morris, J. G. (2018). Environmental and health effects of the herbicide glyphosate. Science of the Total Environment, 616–617, 255–268. https://doi.org/10.1016/j.scitotenv.2017.10.309

11.Zhu, Y. G., Johnson, T. A., Su, J. Q., Qiao, M., Guo, G. X., Stedtfeld, R. D., Hashsham, S. A., & Tiedje, J. M. (2013). Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences, 110(9), 3435–3440. https://doi.org/10.1073/pnas.1222743110

Downloads

Published

2026-02-21