OPTIMAL CONTROL OF A DRYING UNIT BASED ON THE MAXIMUM PRINCIPLE

Authors

  • Akramxodjayev T.T Author
  • Jabborov A.O Author
  • Usmanov K.I Author
  • Soxibov X.Yu Author

Abstract

This paper presents a mathematical and simulation-based approach to the optimal control of a drying unit by applying Pontryagin’s maximum principle. Drying processes in chemical engineering often involve complex interactions of heat and mass transfer, which makes process control challenging. The system under study is modeled as a second-order inertial system, and the control objective is to transfer the process output from an initial to a target state in minimum time, subject to constraints on the control input. Using the maximum principle, a bang-bang control strategy is derived and validated through numerical simulation. The results confirm that time-optimal performance can be achieved with simple switching control, making the approach suitable for implementation in industrial drying systems. The study highlights the practical benefits of optimal control for improving efficiency, energy use, and automation reliability in thermal processing applications.

References

1. Боресков Г.К. Катализ в производстве серной кислоты. — 1992 М.: Наука.

2. Bellman R., Giering M., Gosingstad I. Dynamic Programming. — Princeton University Press, 1954.

3. Дрейцер С. Приборное задание динамически программирования. — Л.: Наука, 1965.

4. Александров А.Г. Оптимальные и адаптивные системы. — М.: Высшая школа, 1989.

5. Kumar, V., & Patil, R. (2011). Modelling and simulation of drying processes: Recent developments and future prospects. Drying Technology, 29(16), 1973–1985. https://doi.org/10.1080/07373937.2011.602245

6. Mujumdar, A. S. (2014). Handbook of Industrial Drying (4th ed.). CRC Press.

7. Yang, X., Zhang, Q., & Wang, X. (2015). Application of Pontryagin’s maximum principle to optimal control in energy-intensive systems. Energy Procedia, 75, 1305–1310. https://doi.org/10.1016/j.egypro.2015.07.230

8. Jørgensen, J. B., & Thomsen, P. (2013). Optimal control for drying processes in chemical plants using embedded controllers. Computers & Chemical Engineering, 58, 188–195. https://doi.org/10.1016/j.compchemeng.2013.07.017

9. Basu, S., & Tiwari, G. N. (2012). Performance evaluation and modeling of greenhouse drying systems. Renewable and Sustainable Energy Reviews, 16(1), 218–235. https://doi.org/10.1016/j.rser.2011.07.137

10. Zhao, Y., & Yuan, X. (2017). Time-optimal control of drying systems under energy constraints. Journal of Process Control, 55, 88–95. https://doi.org/10.1016/j.jprocont.2017.03.004

11. Dinca, M., & Popescu, D. (2016). Bang-bang control strategies for optimal energy consumption in drying applications. IEEE Transactions on Control Systems Technology, 24(5), 1730–1738. https://doi.org/10.1109/TCST.2015.2491317

12. Sousa, R. G., & Coelho, R. F. (2018). Advanced control algorithms in industrial drying units: A survey. Control Engineering Practice, 76, 32–45. https://doi.org/10.1016/j.conengprac.2018.03.015

13. Shi, Z., & Lu, D. (2020). Implementation of optimal control using MATLAB/Simulink for industrial thermal processes. International Journal of Automation and Computing, 17(6), 828–837. https://doi.org/10.1007/s11633-020-1231-9

14. Li, H., & Wen, J. (2021). Optimal control of drying temperature profiles in convective dryers using model predictive control. Drying Technology, 39(4), 445–457. https://doi.org/10.1080/07373937.2020.1759781

15. Ahmed, A., & Hassan, R. (2022). Smart optimization of energy consumption in drying systems using hybrid control algorithms. Energy Reports, 8, 5820–5829. https://doi.org/10.1016/j.egyr.2022.06.021

16. Cardenas, J., & Murillo, J. (2019). Simulink-based modeling and optimization of fluidized bed dryers. Applied Thermal Engineering, 149, 1113–1121. https://doi.org/10.1016/j.applthermaleng.2018.12.047

17. Ko, H. J., & Lee, S. (2023). Real-time implementation of optimal drying control using PLC and HMI systems. Journal of Industrial Information Integration, 30, 100423. https://doi.org/10.1016/j.jii.2022.100423

Downloads

Published

2025-06-12